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Atoms in hydrogen plasma in strong electric fields
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Two-particle states of a hydrogen plasma under the influence of a homogeneous strong electric field
and of the density are investigated. The complex rotated Stark-Coulomb-Schriédinger equation was
solved analytically using complex power series expansions. In this technique one works with square inte-
grable eigenfunctions. Density effects were taken into account as a second-order perturbation of those
polynoms. Real and imaginary parts of the energies are determined which give information about loca-

tion and width of the states.

PACS number(s): 52.20.—j, 52.25.Jm

I. INTRODUCTION AND BASIC IDEAS

In dense plasmas, atomic bound state energies are
drastically influenced by the many-particle effects, i.e.,
screening, self-energy, and phase space occupation. At
sufficiently high densities, bound states decay and will
have a finite lifetime 7~ —#/[2 Im(E)] corresponding to
“complex eigenvalues.” In addition, the continuum edge
is changed so that bound states may disappear (Mott
effect) [1,2]. We want to mention here that the behavior
of bound states in strongly coupled plasmas is of great in-
terest in the discussion of reaction and ionization kinetics
[3,4]. The influence of external strong electric fields
leads, already for low density systems, to complex eigen-
values, too, because the electric field gives rise to a finite
tunnel probability. The related Schrodinger equation has
no stationary solutions and no square integrable eigen-
functions at the complex energies because the Hamiltoni-
an of the system is Hermitian and its eigenvalues have to
be real. The former bound states will now become reso-
nances and move into the complex energy plane. The en-
ergy plane consists of two Riemann sheets, the physical
and the nonphysical ones; the branch cut represents the
continuum. Points belonging to square integrable eigen-
functions can be found on the upper sheet. But reso-
nances are located in the nonphysical plane. A way out is
given by the Aguilar-Balslev-Combes complex scaling
method [5,6], which allows one to rotate the continuous
spectrum over the resonances, so they will be uncovered
and be found in the upper half-plane. This method
developed into a powerful tool of mathematical physics
during the last 20 years [9]. The basic idea is the unitary

transformation Uy; it changes the asymptotic divergence
behavior of the resonance eigenfunction:
OV, =V¥y(re®) -0, OEC. (1)
r— oo

Carrying out the similarity transformation,
{(OAD '} {0V, }=[E,+iE,10¥, , )

one generates a complex rotated Hamiltonian

Ho)=0A0"".
H(0)=Hy(0)+V(6)
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or (3)
H(8)=e *°(H,+e*V(0)) .

From the potential ¥V (r) we have to demand dilatation
analyticity [5,6]. The operator eV (8) is compact; that
means it has only a finite or an enumerably infinite num-
ber of discrete eigenvalues:

O'k(H0+ezoV(9)):R+ N

o @)
o (H(0)=e ¥R, .

(o, stands for the continuous spectrum, R, terms the
positive real axis.) The transformation rotates the con-
tinuous spectrum over the resonances with the angle
—20,, so that they become “uncovered” [7] and hence ei-
genvalues of H(0). The real part of the transformation
angle 0, causes a stretching along the new direction given
by 0, (see Fig. 1). The calculated eigenvalues are in-
dependent of the angle 6, but it has to be big enough to
turn the branch cut over the resonances. It is not neces-
sary to take into account the real part of 6 when solving
two-body problems, but it may be useful in numerical cal-
culations supporting the convergence of the procedure
calculating eigenvalues. Now complex eigenvalues are
associated with square integrable functions, and compu-
tational techniques originally developed for bound states
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FIG. 1. Complex energy plane after scaling procedure.
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can be used. The complex coordinate method has been
successfully applied to atomic and molecular autoioniza-
tion resonances, predissociation resonances, positronium
hydrogen scattering resonances, van der Waals mole-
cules, gas surface scattering resonances nuclear multipar-
ticle systems, and for determining tunneling rates in
bound systems [8]. An overview is given in [15,16].

The Schrodinger equation for hydrogen embedded in
an ionized background described by an Ecker-Weizel po-
tential [10], see also [11,12], with an additional external
electric field F (static, homogeneous) reads

2 2 —Kr 2
L R+ E+XE |w=0, (5
2u 4mey v 41
with
ne? |2

a~a

, p=reduced mass .

eokT

Taking into account both F >0 and « >0, the problem is
not separable in the general case. In [13] the screening
along the x-y plane was specialized. Other results for the
real parts of the energy calculated by perturbation theory
(electric field as a perturbation of Debye eigenfunctions
and both the electric field and density as a perturbation of
Coulomb eigenfunctions) expire for strong fields.

In the present work another way is shown. Eigenfunc-
tions of the complex scaled Stark Hamiltonian are deter-
mined as analytic complex power series. These functions
have no direct physical meaning, but they are normaliz-
able so that we can use them as a basic system for a per-
turbation theory in the complex rotated plane with the
density effects as perturbation. Now strong fields can be
taken into account, and real and imaginary parts of the
spectrum are determined.

II. THE FIELD DEPENDENT BASIC SYSTEM
Without

the density effects, (5) was complex
transformed to
2 —20 2,—6
fie € eFze®+E |W=0. (6)
2u 4megr

This problem is usually separated by means of parabolic
coordinates. With hartree units #=1, p=1, e’=1,
4men=1, and the ansatz ¥=®(£)X(n)e™?, it follows
that

od |, a
e ——d§¢(§)y
E, o, _Fo i _m> —
+ 2§e +a 4§e 4§e ]<P(§) 0,
p J (7
.—6_——_ L
e dn nan(n)
E o F 229_'"_2 -6 —
+\2ne+B+4ne 4 © X(n)=0.
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Here, m is the magnetic quantum number, and the sepa-
ration constants a and 8 represent the parabolic quantum
numbers

n=|m|+n,+n,+a+p, a+pB=1, a,BEC. (8)

Eigenvalues of the system (7) are the resonances (complex
energy values E) and the complex separation constant a
(B depends on a); i.e., we have finally a coupled eigenval-
ue problem of four equations with four eigenvalues. Now
we consider a complex power series for the functions
®(£) and X(7),

X(n)z 2 bnnn+|m| ,

n=0

a,,b,€C. (9

E)= 3 a,£ I,
n=0

Equation (9) in (7) gives the following expressions for the
coefficients:

_ —1
3m2+8n|m|+(2n

a, 5 [4ae’a, _,+2Ee%a, _,
—Fe3%a, _ ,
n=al (10)
b,= —1
" 3m?+8n|m|+(2n)?

[4Be®b, _+2Ee*b, _,

+Fe%b, _,].

For a, and b,, the terms with index » —3 (and for @, and
b, additionally the n —2 terms) disappear. Now real and
imaginary parts are separated. Let us denote real parts
with the index 1 and imaginary parts with the index 2:

60=6,+i6,,
a=a;tia,, B=p,+iB,,
E=E,+iE, ,

a,=a,,+tia,,, b,=b,,+ib,, .
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FIG. 2. Components of the eigenfunction W, ¢0(&,7)
(Im(6)=0.7 rad].
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With
e, =e0‘cos02 , e =e 9‘sin62 ,
ecz=e291008202 , e52=e29‘sin202 , (11)
ec3=e39‘cos362 , es3=e30‘sin362 ,
it follows that
k Haje —azes)a, —1, —Hage tajela, -y,
t2E e, —Ezep)a, —y—2Eye,tEen)a, o, |

—Fe,a, 3+ Fegsa, s,

-1
a —
L 3m24-8n|m|+(2n)?

4aze. T aye)a, —11 M —azega, g,
t2(E,e,, tEep)a, 5 +2(E e, —Ejega, -2,2| »
—Fega, 3 ,—Fe.a, -3,2

(12)
[ 4(Brecy—Baes1)b, — 1,1~ HBreci +Bies)b, _1n

tT2E e,,—E,e,)b, 2,1~ 2(Eje,, T E eg,)b, -22 | »
+Fec3b, 3 ,—Fegsb, 3,

_ -1
3m?+8n|m|+(2n)?

an,2

—1
b p——1
1 3m?2+8n|m|+(2n)?

4By tBies1)b, 1,1 +4(Bre.y—Bres)b, 1 5
t2(E,e,, +E e,)b, —2,1T2(E e, —Eje )b, -2,2
+Fegb, 3+ Fe.b, -3,2

_ —1
3m?2+8n|m|+(2n)?

bn,2

f
The function ¥ determined thus is normalizable for the will be added after the perturbation calculation. Because
correct complex eigenvalues a and E: the m degeneracy, also with the existing screening term,
remains, the energy corrections are given by

V(E79,0)= | 3 a,&" " +i 3 a, 6"t (W VW)W, Vw,)
im0 im0 EW=( V¥, + 3 —F————t (15)
pFEv Ev - E[l,
X s bn 117" Il
n=0 '
© ) -2.72 T T T
+i > b, Tl [eime (13)
n=0 34
The normalization can be calculated analytically. With
the help of this function ¥, which has to be a square inte-
grable, one can find the resonances E,E, and the separa-
tion constants belonging to them. Figure 2 shows an ex- -
ample for n =2, n,=1, n,=0, m =0, F=0.005 au., g
0=0.7i rad, E,=—0.112061 hartree, and S -5.44 -
E,=—2.8X10"% hartree. % ———— F=1275x107Vicm
I e F=1.785x 107 V/em
III. PERTURBATION THEORY - F=255 x107V/em
FOR DENSITY EFFECTS
Let us consider the perturbation I X&
—kKr —«[(&+n)/2] ™ i T T B | I
Vzé_ ¢ p, = é_i _2e £t , (14) -8.16 10-: 10-I3 107 107 10°
K n x [units of a;"]
in second-order terms of the functions (13); that means
the unperturbed problem is the Stark-hydrogen case dis- FIG. 3. « dependence of n =2, m =0 states (real parts) with

cussed above. The self-energy shift —ke?/4me, from (5) F as parameter.
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The matrix elements are determined using the normalized
power series from Sec. II:

W) =ms, ., [*[ @(OX (PLEX ()
X[1—e  ETN g e dy

(16)

After expansion the integrand K was split into real and
imaginary parts:

Re(K)= A (5,7])[ 1—e ~(K/2)5, —(K/Z)n] ,

(17)
Im(K)=B(§,17)[ 1—e ~(k72)5, —(K/Z)n] ,

wherein the collection of & and 7 terms as Cauchy prod-
ucts leads to the sums

8 2N 2N
A(é-’,r]): lim 2 cj’"§n+2]m|2 dj’n,nn+2|mf ,
ji=1 ~®n=0 n=0
16 2N 2N
B(gm=3 |lim 3 ¢, 1" 3 g ,n" 2
j=9 |[N=* =0 n=0

(18)

with the new coefficients ¢ and d (Cauchy products of g;
and b;). Here the convergence criterion of Cauchy prod-
ucts has to be satisfied; that means the convergence ra-

I=f0°° fomA(g’n)e—(K/Z)ge—(K/2)nd§d,r’

: iy ® en+2|m|, —(k/2)¢ J ® n+2|m|, —(k/2)
j— M —(K n m —{K
lim |3 |3 cj'nf gnt2img dé S dj’"fo n e dy
N—oow iy [n=0 0 n=0
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FIG. 4. Field dependence of n =2, m =0 states (real parts)
with « as parameter.

dius of the product sum is the smallest one of those of the
factors [14]. The physical conditions demand that the
series decay for £,77— o, so there is no problem left.
Carrying out some integrals of the structure

. 8 4N n (___K./z)n—k §n+2|m|+l 4N n (_K/2)n—k ,”n+2lml+1
5,1],}\1711»00 !j§1 ,Z'O,Eocf'k (n—k)! (n+2\m|+1) n§0k§0 e (n—k)N (n+2|m|+1) (19
one gets the perturbation matrix elements (16), and the complex energy corrections can be written as
[(Re{ W, | V¥, )?+(Im( ¥, | VW, PYE{D —E[%)
e } [21) lRe (w,IVIw,)+ S 20)
(E‘V = v vi=
tm tm 2 (T~ B+ (ER L

TABLE I. Electron density for different x and temperatures.

« (units of ag!) 1074 1073 1072 107! 2.5%x107!
n, (cm™3) at T=80000 K 6.8X 10 6.8X10'¢ 6.8X10'8 6.8X 10%° 4.2X10%!
n, (cm™3) at T=100000 K 8.5Xx 10" 8.5X 106 8.5X 10 8.5X 10%° 5.3x10%
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TABLE II. Real and imaginary parts of the n =1 state
dependent on « and F.

Units of
F (10’ V/ecm)  « (ag')  Re(E) (eV) Im(E) (eV)
1.275 0 —13.6004 —8.8901x 10713
1.275 0.0001 —13.6004 —8.8902X 10713
1.275 0.001 —13.6004 —8.9037x 10713
1.275 0.01 —13.6031 —1.0216 X 10712
1.275 0.1 —13.8511 —1.0985x 107!
1.275 0.25 —14.9897 —4.3224 X107 1
1.275 0.45 —17.5083 —8.8538X 107!
1.785 0 —13.6007 —3.3610x 10713
1.785 0.0001 —13.6007 —3.9006Xx 10713
1.785 0.001 —13.6008 —5.7167X 10712
1.785 0.01 —13.6035 —5.2315x1071°
1.785 0.1 —13.8540 —3.9836X 1078
1.785 0.25 —15.0008 —1.6717X 1077
1.785 0.45 —17.5310 —3.4636x1077
2.55 0 —13.6015 —1.7195x 107"
2.55 0.0001 —13.6015 —3.2348x 1071
2.55 0.001 —13.6016 —1.5281x107°
2.55 0.01 —13.6043 —1.4684x 1077
2.55 0.1 —13.8594 —1.1152X 1073
2.55 0.25 —15.0213 —4.7056X 1073
2.55 0.45 —17.5733 —9.7648 X107
IV. RESULTS

The behavior of the n =1, m =0 and n =2, m =0
states is calculated using power series up to N =521. The
convergence in & and 7 is still given at 100 Bohr radii.
Electric fields from up to 2.55X 107 V/cm and inverse

3463

Debye radii from 0 to 0.5 a, ! were taken into account.

Figures 3 and 4 show the lowering of the real part of the
energy levels in the n =2, m =0 case, dependent on x and
F, making clear the overlay effects of the external electric
field and screening.

The problem of an avoided level crossing was not dis-
cussed. The dependence of the electron density on tem-
perature and screening parameter k at zero field strength
is shown in Table I. Note that electrons in strong exter-
nal electric fields have a Dawydov-like distribution func-
tion, so that x will become field dependent, too [3].

In Table II are shown real and imaginary parts of some
energy values of the n =1 state. For k=0 we got an ex-
cellent agreement with data from [17]. In the case of
nonzero electric field, there is always a finite tunnel prob-
ability; that means ImE <0. All states decay into the
continuum, the imaginary parts being the relevant life-
times.

V. CONCLUDING REMARKS

In this paper, the influence of strong electric fields on
energy levels in hydrogen plasmas was considered.
Power series determined by the complex scaling method
were used as a basic system for perturbation calculations
Within this technique, additional density effects described
by the Ecker-Weizel potential were taken into account.
Both the energy shift and the imaginary part of the reso-
nances, which describes the decay rate of the levels, were
calculated.
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